用户名: 密码:
 |  | 设为首页 | 加入收藏

重大突破!二氧化碳“变身”续集来了,这回是……

作者:碳中和战略合作网  来源:转载  发布时间:2022-05-18

碳中和战略合作网讯:

此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗?


答案是肯定的!


4月28日,《自然·催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)


,时长00:30


这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。


先把二氧化碳变成“食醋”


或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗?


对此,曾杰回应:“经过后续纯化处理,可以食用。”


那么,二氧化碳究竟是如何变成葡萄糖和油脂的?


“首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。


图片

通过电化学耦合生物发酵实现将二氧化碳和水转化为长链产品的示意图


至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。


“二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。


图片

固态电解质反应器


研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。


不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。


所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。


“我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。


图片

研究团队通过固态电解质反应器制备的乙酸水溶液及乙酸钠粉末


微生物“吃醋”产葡萄糖


得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。


“酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。


“然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。


对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。


“我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。


于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。


图片

改造后用于制备葡萄糖的酵母菌株发酵液(棕色溶液),及制备的葡萄糖(白色溶液)


于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。


新型催化方式有坚实根基


更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。


同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。


“这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。


对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。


“该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。


同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。


曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。

关键字:   二氧化碳“变身”

碳中和战略合作网版权声明:凡注明来源为“碳中和战略合作网:xxx(署名)”,除与碳中和战略合作网签署内容授权协议的网站外,其他任何网站或者单位未经允许禁止转载、使用,违者必究。如需使用,请与13552701370联系;凡本网注明“来源:xxx(非碳中和战略合作网)”的图片或文字,均转载与其他媒体,目的在于传播更多信息,但并不意味着碳中和战略合作网赞同其观点或证实其描述,文章内容仅供参考。其他媒体如需转载,请与稿件来源方联系,如产生任何问题与本网无关,想了解更多内容,请登录网站http://www.jnzlhz.com

图片新闻

  • 阿里云首个双碳管理产品—能耗宝,重磅发布!阿里云首个双碳管理产品—能耗宝,重磅发布!
  • 立邦建筑节能双碳目标参编上海建筑外墙保温工程标准立邦建筑节能双碳目标参编上海建筑外墙保温工程标准
  • 打造双碳时代的基础设施:浙江衢州探索建设碳账户打造双碳时代的基础设施:浙江衢州探索建设碳账户
  • 湖北碳减排支持工具落地达17.04亿元湖北碳减排支持工具落地达17.04亿元
  • 预测:产品“碳中和”标签将带来企业减碳新一轮变革预测:产品“碳中和”标签将带来企业减碳新一轮变革
  •  绿色金融:绿色信贷余额15.9万亿、绿色债券存量1.16万亿 绿色金融:绿色信贷余额15.9万亿、绿色债券存量1.16万亿

在线评论

  • *请自觉遵守互联网相关法律规定,字数在200字以内。

战略合作联系

  • 投稿邮箱:jnzlhz@126.com
  • 广告合作热线:13552701370
  • 微信公众账号:
关于我们 | 联系方式 | 会员服务 | 多元化服务 | 招聘信息 | 在线留言 | 友情链接 | 版权申明 |